使用PlantUML来画UML

图像:

1
2
3
4
5
6
start
:配置Java环境; 
:下载pantuml.jar;
:编写描述文件; 
:执行; 
stop

源码:

1
2
3
4
5
6
start
:配置Java环境; 
:下载pantuml.jar;
:编写描述文件; 
:执行; 
stop

图像:

1
2
3
4
Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response
Alice -> Bob: Another authentication Request
Alice <-- Bob: another authentication Response

源码:

1
2
3
4
Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response
Alice -> Bob: Another authentication Request
Alice <-- Bob: another authentication Response

图像:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
participant par
actor act
boundary bou
control con
entity ent
database dat

par->act : to actor
par->bou : to  boundary
par->con : to control
par->ent : to entity
par->dat : to database

源码:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
participant par
actor act
boundary bou
control con
entity ent
database dat

par->act : to actor
par->bou : to  boundary
par->con : to control
par->ent : to entity
par->dat : to database

图像:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
participant "我是很长的一段话,如果要用我来表达的话,就太长了吧!" as par
actor act #FF0000
boundary bou #00FF00
control con #0000FF
entity ent #FFFF00
database dat #00FFFF

par->act : to actor
par->bou : to  boundary
par->con : to control
par->ent : to entity
par->dat : to database

源码:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
participant "我是很长的一段话,如果要用我来表达的话,就太长了吧!" as par
actor act #FF0000
boundary bou #00FF00
control con #0000FF
entity ent #FFFF00
database dat #00FFFF

par->act : to actor
par->bou : to  boundary
par->con : to control
par->ent : to entity
par->dat : to database

图像:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
package org.nju.dislab.uml{
    class TestA {
        -String name
        +int id
    }

    class TestB extends TestA{
        -String desc
        +String getDesc()
        +void setDesc(String desc)
    }
}

源码:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
package org.nju.dislab.uml{
    class TestA {
        -String name
        +int id
    }

    class TestB extends TestA{
        -String desc
        +String getDesc()
        +void setDesc(String desc)
    }
}

图像:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
xearth
 61.17 -150.00 "Anchorage"           # Alaska, USA
 38.00   23.73 "Athens"              # Greece
 33.4    44.4  "Baghdad"             # Iraq
 13.73  100.50 "Bangkok"             # Thailand
 39.92  116.43 "Beijing"             # China
 52.53   13.42 "Berlin"              # Germany
 32.3   -64.7  "Bermuda"             # Bermuda
 42.33  -71.08 "Boston"              # Massachusetts, USA
-15.8   -47.9  "Brasilia"            # Brazil
 -4.2    15.3  "Brazzaville"         # Congo
-34.67  -58.50 "Buenos Aires"        # Argentina
 31.05   31.25 "Cairo"               # Egypt
 22.5    88.3  "Calcutta"            # India
-33.93   18.47 "Cape Town"           # South Africa
 33.6    -7.6  "Casablanca"          # Morocco (Rabat?)
 41.83  -87.75 "Chicago"             # Illinois, USA
 32.78  -96.80 "Dallas"              # Texas, USA
 28.63   77.20 "New Delhi"           # India
 39.75 -105.00 "Denver"              # Colorado, USA
 24.23   55.28 "Dubai"               # UAE (Abu Dhabi?)
-27.1  -109.4  "Easter Island"       # Easter Island
-18.0   178.1  "Fiji"                # Fiji
 13.5   144.8  "Guam"                # Guam
 60.13   25.00 "Helsinki"            # Finland
 22.2   114.1  "Hong Kong"           # Hong Kong
 21.32 -157.83 "Honolulu"            # Hawaii, USA
 52.2   104.3  "Irkutsk"             # Irkutsk, Russia
 41.0    29.0  "Istanbul"            # Turkey (Ankara?)
 -6.13  106.75 "Jakarta"             # Indonesia
 31.8    35.2  "Jerusalem"           # Israel
 34.5    69.2  "Kabul"               # Afghanistan
 27.7    85.3  "Kathmandu"           # Nepal
 50.4    30.5  "Kiev"                # Ukraine
  3.13  101.70 "Kuala Lumpur"        # Malaysia
  6.45    3.47 "Lagos"               # Nigeria
-12.10  -77.05 "Lima"                # Peru
 51.50   -0.17 "London"              # United Kingdom
 40.42   -3.72 "Madrid"              # Spain
 14.6   121.0  "Manila"              # The Phillipines
 21.5    39.8  "Mecca"               # Saudi Arabia
 19.4   -99.1  "Mexico City"         # Mexico
 25.8   -80.2  "Miami"               # Florida, USA
  6.2   -10.8  "Monrovia"            # Liberia
 45.5   -73.5  "Montreal"            # Quebec, Canada
 55.75   37.70 "Moscow"              # Russia
 -1.28   36.83 "Nairobi"             # Kenya
 59.93   10.75 "Oslo"                # Norway
 48.87    2.33 "Paris"               # France
-32.0   115.9  "Perth"               # Australia
 45.5  -122.5  "Portland"            # Oregon, USA
 -0.2   -78.5  "Quito"               # Ecuador
 64.15  -21.97 "Reykjavik"           # Iceland
-22.88  -43.28 "Rio de Janeiro"      # Brazil
 41.88   12.50 "Rome"                # Italy
 11.0   106.7  "Ho Chi Minh City"    # Vietnam (Hanoi?)
 37.75 -122.45 "San Francisco"       # California, USA
  9.98  -84.07 "San Jose"            # Costa Rica
 18.5   -66.1  "San Juan"            # Puerto Rico
-33.5   -70.7  "Santiago"            # Chile
  1.2   103.9  "Singapore"           # Singapore
 42.67   23.30 "Sofia"               # Bulgaria
 59.33   18.08 "Stockholm"           # Sweden
-33.92  151.17 "Sydney"              # Australia
-17.6  -149.5  "Tahiti"              # Tahiti
 16.8    -3.0  "Timbuktu"            # Mali (Bamako?)
 35.67  139.75 "Tokyo"               # Japan
 43.70  -79.42 "Toronto"             # Ontario, Canada
 32.9    13.2  "Tripoli"             # Libya
 47.9   106.9  "Ulan Bator"          # Mongolia
 49.22 -123.10 "Vancouver"           # B.C., Canada
 48.22   16.37 "Vienna"              # Austria
 38.9   -77.0  "Washington"          # United States
-41.28  174.78 "Wellington"          # New Zealand
 62.5  -114.3  "Yellowknife"         # N.T., Canada
 90.00    0.00 "North Pole"          # North Pole
-90.00    0.00 "South Pole"          # South Pole

源码:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
xearth
 61.17 -150.00 "Anchorage"           # Alaska, USA
 38.00   23.73 "Athens"              # Greece
 33.4    44.4  "Baghdad"             # Iraq
 13.73  100.50 "Bangkok"             # Thailand
 39.92  116.43 "Beijing"             # China
 52.53   13.42 "Berlin"              # Germany
 32.3   -64.7  "Bermuda"             # Bermuda
 42.33  -71.08 "Boston"              # Massachusetts, USA
-15.8   -47.9  "Brasilia"            # Brazil
 -4.2    15.3  "Brazzaville"         # Congo
-34.67  -58.50 "Buenos Aires"        # Argentina
 31.05   31.25 "Cairo"               # Egypt
 22.5    88.3  "Calcutta"            # India
-33.93   18.47 "Cape Town"           # South Africa
 33.6    -7.6  "Casablanca"          # Morocco (Rabat?)
 41.83  -87.75 "Chicago"             # Illinois, USA
 32.78  -96.80 "Dallas"              # Texas, USA
 28.63   77.20 "New Delhi"           # India
 39.75 -105.00 "Denver"              # Colorado, USA
 24.23   55.28 "Dubai"               # UAE (Abu Dhabi?)
-27.1  -109.4  "Easter Island"       # Easter Island
-18.0   178.1  "Fiji"                # Fiji
 13.5   144.8  "Guam"                # Guam
 60.13   25.00 "Helsinki"            # Finland
 22.2   114.1  "Hong Kong"           # Hong Kong
 21.32 -157.83 "Honolulu"            # Hawaii, USA
 52.2   104.3  "Irkutsk"             # Irkutsk, Russia
 41.0    29.0  "Istanbul"            # Turkey (Ankara?)
 -6.13  106.75 "Jakarta"             # Indonesia
 31.8    35.2  "Jerusalem"           # Israel
 34.5    69.2  "Kabul"               # Afghanistan
 27.7    85.3  "Kathmandu"           # Nepal
 50.4    30.5  "Kiev"                # Ukraine
  3.13  101.70 "Kuala Lumpur"        # Malaysia
  6.45    3.47 "Lagos"               # Nigeria
-12.10  -77.05 "Lima"                # Peru
 51.50   -0.17 "London"              # United Kingdom
 40.42   -3.72 "Madrid"              # Spain
 14.6   121.0  "Manila"              # The Phillipines
 21.5    39.8  "Mecca"               # Saudi Arabia
 19.4   -99.1  "Mexico City"         # Mexico
 25.8   -80.2  "Miami"               # Florida, USA
  6.2   -10.8  "Monrovia"            # Liberia
 45.5   -73.5  "Montreal"            # Quebec, Canada
 55.75   37.70 "Moscow"              # Russia
 -1.28   36.83 "Nairobi"             # Kenya
 59.93   10.75 "Oslo"                # Norway
 48.87    2.33 "Paris"               # France
-32.0   115.9  "Perth"               # Australia
 45.5  -122.5  "Portland"            # Oregon, USA
 -0.2   -78.5  "Quito"               # Ecuador
 64.15  -21.97 "Reykjavik"           # Iceland
-22.88  -43.28 "Rio de Janeiro"      # Brazil
 41.88   12.50 "Rome"                # Italy
 11.0   106.7  "Ho Chi Minh City"    # Vietnam (Hanoi?)
 37.75 -122.45 "San Francisco"       # California, USA
  9.98  -84.07 "San Jose"            # Costa Rica
 18.5   -66.1  "San Juan"            # Puerto Rico
-33.5   -70.7  "Santiago"            # Chile
  1.2   103.9  "Singapore"           # Singapore
 42.67   23.30 "Sofia"               # Bulgaria
 59.33   18.08 "Stockholm"           # Sweden
-33.92  151.17 "Sydney"              # Australia
-17.6  -149.5  "Tahiti"              # Tahiti
 16.8    -3.0  "Timbuktu"            # Mali (Bamako?)
 35.67  139.75 "Tokyo"               # Japan
 43.70  -79.42 "Toronto"             # Ontario, Canada
 32.9    13.2  "Tripoli"             # Libya
 47.9   106.9  "Ulan Bator"          # Mongolia
 49.22 -123.10 "Vancouver"           # B.C., Canada
 48.22   16.37 "Vienna"              # Austria
 38.9   -77.0  "Washington"          # United States
-41.28  174.78 "Wellington"          # New Zealand
 62.5  -114.3  "Yellowknife"         # N.T., Canada
 90.00    0.00 "North Pole"          # North Pole
-90.00    0.00 "South Pole"          # South Pole

参考

在hexo中使用PlantUML来画UML